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1. Introduction

Uniform slender beams with axially immovable edges, are widely used structural elements in
many fields of engineering. These beams when subjected to severe dynamic loads, experience large
amplitudes and the linear theory to predict the frequencies is not applicable. Geometrical non-
linear theories have to be considered in the formulations to study them.
This was the subject matter of the classic work of Woinowsky-Krieger [1], wherein

the non-linear differential equation, which contains the tension term developed because
of large amplitudes, was solved. Continuum [2] and different finite-element formulations
[3–5] are also available for solving the large-amplitude vibration problem of uniform slender
beams.
The effect of the elastic foundation has to be considered in the formulation for the cases

of rails, underground pipes, etc. While the Winkler foundation [6] model is the simplest,
two-parameter foundation models [7] represent the foundation characteristics more ac-
curately for practical purposes. Pasternak foundation model [8] is one widely used two-parameter
model.
The large-amplitude vibration problem of uniform slender beams on the Pasternak

foundation is studied using the conservation of total energy principle in this paper. The
temporal equation governing the large-amplitude vibrations is directly obtained in this
approach, by assuming a suitable admissible spatial function satisfying the boundary conditions
of the beams. The temporal equation can be solved by using any standard numerical integration
scheme.
The numerical results in the form of ratio of the fundamental non-linear frequency to

the linear frequency for both the simply supported and clamped beams are presented in the tables
for several values of the amplitude parameter and the two stiffness parameters of the Pasternak
foundation.
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2. Formulation

For a uniform slender beam on Pasternak foundation (Fig. 1) undergoing large-amplitude
vibrations, the total energy UT at any given instant of time is

UT ¼ UE þ UF þ WP þ T ¼ Constant: ð1Þ

In Eq. (1), UE is the elastic energy, UF is the energy stored in the foundation, WP is the work
done by the tension ‘P’ developed in the beam due to large amplitudes and T is the kinetic energy
and these are given by

UE ¼
EI

2

Z L

0

ðw00Þ2 dx; ð2Þ

UF ¼
k1

2

Z L

0

w2 dx þ
k2

2

Z L

0

ðw0Þ2 dx; ð3Þ

WP ¼
P

2

Z L

0

1
2
ðw0Þ2 dx ð4Þ

and

T ¼
m

2

Z L

0

ð ’wÞ2 dx; ð5Þ

where E is the Young’s modulus, I is the area moment of inertia, L is the length of the beam, w is
the lateral displacement, x is the axial coordinate, k1 and k2 are the two stiffnesses of the
foundation (k1 being the usual Winkler stiffness), ( )0 represents differentiation with respect to ‘x’
and ( � ) represents differentiation with respect to time ‘t’.
The tension ‘P’ [Eq. (4)] developed in the beam due to large amplitudes is [1]

P ¼
EI

2Lr2

Z L

0

ðw0Þ2 dx; ð6Þ

where r is the radius of gyration.
A variable separable solution for ‘w’ is assumed as

wðx; tÞ ¼ W wðxÞ; ð7Þ

Fig. 1. A uniform beam on Pasternak foundation.
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where W is a function of time alone and wðxÞ is the admissible spatial distribution satisfying the
geometric boundary conditions of the beam. The following simple trigonometric functions

wðxÞ ¼ sin
px

L
ð8Þ

and

wðxÞ ¼
1

2
1� cos

2px

L

� �
ð9Þ

satisfy all the boundary conditions, namely

wð0Þ ¼ w00ð0Þ ¼ wðLÞ ¼ w00ðLÞ ¼ 0 ð10Þ

and

wð0Þ ¼ w0ð0Þ ¼ wðLÞ ¼ w0ðLÞ ¼ 0 ð11Þ

for the cases of a simply supported beam and a clamped beam, respectively. It may be noted here
that the function wðxÞ has a maximum amplitude at the middle of the span of the beam.
Substituting Eq. (7), with an appropriate function for wðxÞ as given in Eqs. (8) and (9) in

Eq. (1), we get, after evaluating the integrals and simplification,

’W2 þ
a1
im

W 2 þ
a2
m

1

jr2
W 2 ¼ Constant ¼ H; ð12Þ

where a1 and a2 are

a1 ¼ EI
p
L

� �4
þk1 þ k2

p
L

� �2
ð13Þ

and

a2 ¼ EI
p
L

� �4
ð14Þ

for the simply supported beam, with i ¼ 1 and j ¼ 8; and

a1 ¼ EI
2p
L

� �4

þ3k1 þ k2
2p
L

� �2

ð15Þ

and

a2 ¼ EI
2p
L

� �4

ð16Þ

for the clamped beam, with i ¼ 3 and j ¼ 32:

3. Linear free vibrations

If the third term in Eq. (12) is neglected, the governing temporal differential equation for the
linear vibrations is

’W2 þ
a1
im

W 2 ¼ H: ð17Þ
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Using the condition, ’W ¼ 0 at W ¼ Wm; where, Wm is the maximum amplitude, the value of
‘H’ is

H ¼
a1
im

W 2
m: ð18Þ

Using Eq. (18), Eq. (17) can be written as

dW

dt
¼

a1
im

ðW 2
m � W 2Þ

h i1=2
: ð19Þ

Eq. (19) can be integrated asZ 2p=oL

0

dt ¼
Z Wm

0

dW

ða1=imÞðW 2
m � W 2Þ

� 	1=2: ð20Þ

Assuming

W ¼ Wm sin y ð21Þ

and carrying out the integrations of Eq. (20), we obtain the time period

T ¼
2p
oL

¼
2p

ða1=imÞ1=2
; ð22Þ

where oL is the linear radian frequency, or

oL ¼
a1
im

� �1=2
: ð23Þ

The linear frequency parameter lL ð¼ mo2
LL4=EIÞ can be obtained after substituting for a1; i

and m as

lL ¼ ½p4 þ lF10 þ lF20 p2	 ð24Þ

for the simply supported beam and

lL ¼ 16
3
p4 þ lF10 þ 3

4
lF20p2 ð25Þ

for the clamped beam. lF10 and lF20 are the foundation stiffness parameters

lF10 ¼
k1L

4

EI
ð26Þ

and

lF20 ¼
k2L

2

EI
: ð27Þ

4. Large-amplitude (non-linear) free vibrations

The large-amplitude free vibration behaviour of beams on Pasternak foundation can be
obtained by solving Eq. (12), following the same procedure followed in the case of linear
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vibration. The final expression for the non-linear radian frequency oNL is

1

oNL

¼
2

p

Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffi
a1=im

p
1þ f1=ð1þ lF1 þ lF2Þgða2=8Þð1þ sin2 yÞ
� 	1=2 ð28Þ

for the simply supported beam and

1

oNL

¼
2

p

Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffi
a1=im

p
1þ f1=ð1þ 3

16
lF1 þ 1

4
lF2Þgða2=32Þð1þ sin2yÞ

� 	1=2 ð29Þ

for the clamped beam, where lF1 is equal to lF10=p4 and lF2 is equal to lF20=p2 and

a ¼
Wm

r
: ð30Þ

Eqs. (28) and (29) can be integrated for different given values of lF1; lF2 and a; using any
standard numerical integration scheme. It may be noted here that ða1=imÞ1=2 is the linear radian
frequency.

Table 1

Values of oNL=oL of simply supported beam on Pasternak foundation

a lF1 lF2

0.0 0.5 1.0 1.5 2.0

0.5 0.0 1.0231 1.0155 1.0116 1.0093 1.0078

0.5 1.0155 1.0116 1.0093 1.0078 1.0067

1.0 1.0116 1.0093 1.0078 1.0067 1.0058

5.0 1.0039 1.0036 1.0033 1.0031 1.0029

10.0 1.0021 1.0020 1.0020 1.0019 1.0018

1.0 0.0 1.0892 1.0604 1.0457 1.0367 1.0307

0.5 1.0604 1.0457 1.0367 1.0307 1.0264

1.0 1.0457 1.0367 1.0307 1.0264 1.0231

5.0 1.0155 1.0143 1.0133 1.0124 1.0116

10.0 1.0085 1.0081 1.0078 1.0075 1.0072

2.0 0.0 1.3178 1.2219 1.1708 1.1389 1.1171

0.5 1.2219 1.1708 1.1389 1.1171 1.1012

1.0 1.1708 1.1389 1.1171 1.1012 1.0891

5.0 1.0604 1.0559 1.0520 1.0486 1.0457

10.0 1.0334 1.0320 1.0307 1.0295 1.0283

3.0 0.0 1.6257 1.4491 1.3519 1.2898 1.2466

0.5 1.4491 1.3519 1.2898 1.2466 1.2147

1.0 1.3519 1.2898 1.2466 1.2147 1.1902

5.0 1.1309 1.1213 1.1132 1.1060 1.0997

10.0 1.0736 1.0705 1.0677 1.0650 1.0627
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5. Numerical results and discussion

Fig. 1 shows a schematic representation of the uniform beam resting on the two-parameter
Pasternak foundation. Both the simply supported and clamped beams are considered in the
present study. The two ends of the beam are assumed to be immovable axially. Using the
formulation presented in the previous section, the values of oNL=oL are computed for different
practical values of the two foundation parameters, lF1 and lF2 of the Pasternak foundation. The
numerical results for the simply supported beam and clamped beam are presented in Tables 1 and
2, respectively. The following broad conclusions can be arrived at from these results:

* The effect of the two-parameter foundation, in general, is to reduce the non-linearity.
* For higher values of lF1; the effect of lF2 on the frequency ratios is found to be small. However,
for a particular lF2; as lF1 is increased, the frequency ratios decrease considerably.

* The non-linearity involved in the case of the clamped beam is much less compared to the case of
the simply supported beam irrespective of the foundation stiffness parameters.

* The non-linearity increases with the increase in amplitude ratio a; as anticipated, irrespective of
the foundation stiffness parameters.

Table 2

Values of oNL=oL of clamped beam on Pasternak foundation

a lF1 lF2

0.0 0.5 1.0 1.5 2.0

0.5 0.0 1.0058 1.0052 1.0047 1.0042 1.0039

0.5 1.0053 1.0048 1.0043 1.0040 1.0037

1.0 1.0049 1.0044 1.0041 1.0037 1.0034

5.0 1.0030 1.0028 1.0027 1.0025 1.0024

10.0 1.0020 1.0019 1.0019 1.0018 1.0017

1.0 0.0 1.0231 1.0206 1.0185 1.0169 1.0155

0.5 1.0212 1.0190 1.0173 1.0158 1.0146

1.0 1.0195 1.0177 1.0162 1.0149 1.0138

5.0 1.0120 1.0113 1.0106 1.0101 1.0096

10.0 1.0081 1.0078 1.0075 1.0072 1.0069

2.0 0.0 1.0892 1.0797 1.0720 1.0657 1.0604

0.5 1.0818 1.0738 1.0672 1.0616 1.0569

1.0 1.0756 1.0687 1.0629 1.0580 1.0539

5.0 1.0471 1.0443 1.0418 1.0396 1.0376

10.0 1.0320 1.0307 1.0295 1.0284 1.0273

3.0 0.0 1.1902 1.1708 1.1550 1.1418 1.1308

0.5 1.1753 1.1586 1.1449 1.1334 1.1236

1.0 1.1625 1.1481 1.1361 1.1259 1.1171

5.0 1.1028 1.0969 1.0916 1.0869 1.0826

10.0 1.0705 1.0677 1.0650 1.0626 1.0604
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* All the above conclusions can be explained qualitatively because the non-linearity in the present
study is mainly dependent on the rotation term w0:

It may be noted here that the results obtained presently for the simply supported and clamped
beams without Pasternak foundation (lF1 ¼ lF2 ¼ 0) match very well with those of Refs. [1,5],
respectively. The present results with lF2 ¼ 0 are for uniform beams on a simple Winkler
foundation [6].

6. Concluding remarks

The conservation of total energy principle is used to study the large-amplitude vibrations of
uniform, simply supported and clamped beams, with axially immovable ends, on Pasternak
foundation. A governing temporal equation which can be integrated numerically is obtained from
the energy principle. The ratios of non-linear to linear frequencies of the beams for specific
practical values of the two foundation stiffness parameters of the Pasternak foundation are
presented. Based on the numerical results, some broad interesting conclusions are made.
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